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SUMMARY

In this paper, we develop a �nite element model for solving the convection–di�usion-reaction equation
in two dimensions with an aim to enhance the scheme stability without compromising consistency.
Reducing errors of false di�usion type is achieved by adding an arti�cial term to get rid of three
leading mixed derivative terms in the Petrov–Galerkin formulation. The �nite element model of the
Petrov–Galerkin type, while maintaining convective stability, is modi�ed to suppress oscillations about
the sharp layer by employing the M -matrix theory. To validate this monotonic model, we consider test
problems which are amenable to analytic solutions. Good agreement is obtained with both one- and
two-dimensional problems, thus validating the method. Other problems suitable for benchmarking the
proposed model are also investigated. Copyright ? 2002 John Wiley & Sons, Ltd.

KEY WORDS: convection–di�usion-reaction equation; two dimensions; Petrov–Galerkin formulation;
M -matrix theory; monotonic

1. INTRODUCTION

The scalar convection–di�usion-reaction (CDR) equation is examined as a linear model for
simulating time-dependent equations in areas of �uid dynamics and heat transfer. In addi-
tion, this equation is practically important, as it is akin to the constitutive equations used to
model the transport of turbulent kinetic energy and its dissipation [1]. In addition, constitu-
tive equations for the extra stress tensor in viscoelastic �uid �ows fall into this category [2].
In an externally applied magnetic �eld, the magnetic induction equation for liquid metals is
classi�ed as the CDR equation as well [3]. The Helmholtz equation, a special form of CDR
equation, governs wave propagation in areas of exterior and �bre acoustics [4]. It is this wide
application scope that makes numerical investigation of CDR equation worthwhile.
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Compared with the considerable amount of e�ort that has been invested in developing the
convection–di�usion schemes, fewer studies have been devoted to the more general CDR
equation [5–11] and the development of discontinuity-capturing CDR schemes [12–14]. A
reliable CDR model must have the ability to render accurate solutions while suppressing
numerical oscillations of di�erent kinds. The problem of numerical instability stems from the
occurrence of convection and reaction terms. It is, therefore, necessary to construct stabilization
schemes, and this motivated the present study. In this paper, we are also concerned with
prediction accuracy since we do not regard a scheme as useful if it cannot provide accuracy
to a certain high level in the computation of two-dimensional problems. Another goal in the
present model development is to resolve �eld variables in the vicinity of sharp layers.
The rest of this paper is organized as follows. Section 2 presents the working equation.

This is followed by presentation of the one-dimensional �nite element model. The essential
elements of the proposed model are then presented in greater detail in Section 4. Our emphasis
is on obtaining results that are less contaminated by false di�usion errors and on obtaining
oscillation-free solutions in the vicinity of sharp layers. Section 5 presents numerical results
that can demonstrate the validity of the method. In Section 6, we give concluding remarks.

2. WORKING EQUATIONS

The following CDR equation is often considered as the model equation for schemes developed
to solve the �uid dynamics and heat transfer problems:

�t + �u�x + �v�y − ��(�xx + �yy) + �R�=0 (1)

In the above, �u and �v represent the velocity components along the x and y directions, respec-
tively. Other coe�cients involve �� and �R, which denote the di�usion (or �uid viscosity) and
the reaction coe�cient, respectively. By conducting the Euler implicit time-stepping scheme
on �t , we can obtain the steady-state CDR equation u�x + v�y − �(�xx + �yy) + R�=f,
where u= �u�t; v= �v�t; R=(1+ �R�t) and f=�n. It is, therefore, instructive to analyse the
following model equation:

u�x + v�y − �(�xx + �yy) + R�=f (2)

We shall, for illustrative purposes, assume that (u; v); �, and R are constant throughout. For
simplicity, the value of � is sought subject to �= g on the boundary @�.

3. FINITE ELEMENT MODEL

Like other numerical methods, the �nite element method has a sound mathematical basis for
proving the convergence of solutions. Apart from this theoretical foundation, the �nite element
method is favourably used when solving problems involving complex geometry. Within the
weighted residual framework, the �nite element solution for Equation (2) is computed using∫
Wi(u · ∇� − �∇2� + R�) d�=

∫
Wif d�. The key to obtaining highly accurate solutions

exhibiting the non-oscillatory property lies in choosing an appropriate weighting function Wi.
We shall, in what follows, address the construction of Wi in the linear element context.
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To simplify matters in the case of high Peclet, we will �rst derive Wi based on the following
one-dimensional CDR equation:

u∇�− �∇2�+ R�=f (3)

The Galerkin representation of Equation (3) in a linear element �e = {xi; xi+1} takes the
following matrix form:



−uh
2

uh
2

−uh
2

uh
2




 �i

�i+1


+



�
h2

−�
h2

−�
h2

�
h2




 �i

�i+1


+



R
3

R
6

R
6

R
3




 �i

�i+1




=



1
3

1
6

1
6

1
3




 fi

fi+1


 (4)

In the above, h(≡ xi+1− xi) denotes the grid size. The assemblage of two elements having the
nodal point i in common results in the �nite element equation for �i

(−u
2h

− �
h2
+
R
6

)
�i−1 +

(
2�
h2
+
2R
3

)
�i +

(
u
2h

− �
h2
+
R
6

)
�i+1

=
1
6
fi−1 +

2
3
fi +

1
6
fi+1 (5)

Equation (5) shows that the dominance of the matrix diagonal decreases as the reaction
coe�cient decreases and the velocity |u| increases. As the accompanying instabilities are
numerical in origin, re�nement of Wi from the shape function Ni is warranted. In keeping
with the above, Wi (i=1; 2) is expressed as follows:

Wi=Ni + �u
@Ni
@x

+ Pi (6)

The last two terms are introduced for stabilizing the scheme applied in the case of high Peclet
number R1

R1 =
uh
�

(7)

and low reaction number R2

R2 =
Rh2

�
(8)

Substituting (6) into Equation (2), the linear �nite element equation at an arbitrary point i
is derived from ∫

�

(
Ni + �u

@Ni
@x

+ Pi

)
(u∇�− �∇2�+ R�− f) d�=0 (9)
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As our goal is to enhance Galerkin formulation, we need to re�ne the third matrix in
Equation (4) by introducing parameters � and �. One can change

R
3


 1

1
2

1
2

1




to

R
3

[
� �
� �

]

by choosing P1 and P2 as

P1 = 1
6(−3 + 2�+ �) + 1

2(1− 2�+ �)� (10)

P2 = 1
6(−3 + 2�+ �)− 1

2 (1− 2�+ �)� (11)

where −16�61 denotes the master co-ordinate. After some algebra, the following modi�ed
equation [15] for (9):

u�x − �uxx + R�− f=Ru��x +
[
�
4(�− �)
3

+ u2�− �h2R
6

]
�xx +H:O:T: (12)

is derived subject to the consistency requirement

�+ 2�=3 (13)

The weighting functions Pi (i=1; 2) are thus obtained as

P1 =−(1− �)� (14)

P2 = (1− �)� (15)

The resulting discrete equation is derived as follows in a domain with a uniform grid size:

{[
sgn(m)

(
R1 − u�

h
R2

)
− 6 + 4�+ �

3
R2 − 2u�

h
R1

]
�i+m

}
m={−1;1}

+
[
12− 8�+ 2(3− �)

3
R2 +

4u�
h
R1

]
�i

=
{[
sgn(m)

( u�
hR
R2

)
+
�
3R
R2

]
fi+m

}
m={−1;1}

+
[
2(3− �)
3R

R2

]
fi=0 (16)

To present the discrete equation in a somewhat more compact form, the sign notation sgn(◦)
shown above is employed.
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Figure 1. The plot of � in the domain −1000¡u¡1000; 10¡R¡100 000.

To complete the �nite element model development, we need to determine � shown in
(6) and � shown in (14) and (15). Our aim in determining them is to optimize the �nite
element model. To this end, the analytic solution, �exact =C1 exp(u=2�+(1=2�)

√
u2 + 4R�)+

C2 exp(u=2�− (1=2�)
√
u2 + 4R�), is substituted into the discrete equation (5), we can derive

� and � as follows after some algebra:

�=
h
u

[
R1
R2
+

sinh(R1)
cosh(R1)− cosh( 12

√
R21 + R2)

]
(17)

�=
3
R2

{
2(R21 + 3R2)
(R2 + 12)

+
[R2 cosh(R1) + 2R1 sinh(R1)]

(R2 + 12)[cosh(R1)− cosh( 12
√
R21 + R2)]

}
(18)

In the above, C1 and C2 are two arbitrary constants. For clarity, we plot � and � in Figures 1
and 2 in terms of u and R, respectively. In the limiting case of zero reaction, � in Equation (17)
turns out to be that proposed by Hughes and Brooks [16]. It is also interesting to �nd that
limR→0 �=1. This is desirable since 06�61 over the entire range of R.
Before proceeding with the next section, it is worth noting that use of � and � from Equa-

tions (17) and (18) renders a nodally exact solution to the model equation (3). Speci�cation of
these analytic convection and reaction coe�cients forms the building block for the subsequent
two-dimensional �nite element model development.

4. TWO-DIMENSIONAL FINITE ELEMENT MODEL

The goal in developing the CDR �nite element model in two dimensions is to retain the
desirable feature of its one-dimensional model. For this reason, we exploit the tensor product
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Figure 2. The plot of � in the domain −1000¡u¡1000; 10¡R¡100 000.
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Figure 3. Numbering strategy for the bi-linear element.

operator

Wi=Ni + �xu
@Ni
@x

+ �yv
@Ni
@y

+ Pi (19)

In the above, Ni (i=1∼ 4) represents the bilinear shape functions. As a good stabilization
means for the positive-valued reaction term, we introduce six coe�cients �x; �y; �x; �y; �x, and
�y when constructing Pi. Referring to the element numbering schematic shown in Figure 3,
P1∼P4 are expressed as

P1 = P(−1;−1) (20a)

P2 = P(1;−1) (20b)

P3 = P(1; 1) (20c)

P4 = P(−1; 1) (20d)
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where P(m; n) is de�ned as

P(m; n) =−1
4
+
�x�y
9
+
�y�x
18

+
�x�y
18

+
�x�y
36

+ sgn(m)�
(
−1
4
+
�x�y
3

− �y�x
6
+
�x�y
6

− �x�y
12

)

+sgn(n)�
(
−1
4
+
�x�y
3
+
�y�x
6

− �x�y
6

− �x�y
12

)

+sgn(m) sgn(n)��
(
−1
4
+ �x�y − �y�x

2
− �x�y

2
+
�x�y
4

)
(21)

Consistency is retained on condition that 2�x + �x=3 and 2�y + �y=3. Substitution of
the above two consistency-satisfying constraints into Equation (21) enables us to rewrite
P(m; n) as

P(m; n) = sgn(m)�
(
1
2
− �x
2

)
+ sgn(n)�

(
1
2
− �y
2

)

+sgn(m) sgn(n)��
(
2− 3�x

2
− 3�y

2
+ �x�y

)
(22)

The consistent �nite element equation is derived by multiplying the weighting function with
every term shown in the di�erential equation (2). In this way, the discrete equation at a point
(i; j) can be derived as

[{[
sgn(m)
12

(
�yRx1 − u�x

h
Rx2

)
− �y
2
+
�x�y
3

− u�x
6h
Rx1

− sgn(m) sgn(n) v�y
4k
Rx1 +

�x�y
72

Rx2

]
k2

+
[
sgn(n)
12

(
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k
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)
− �x
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3
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6k
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4h
Ry1 +

�x�y
72
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]
h2
}
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]
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+
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(
1
2
Rx1 − �y

6
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3h
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)
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3
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]
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+
[
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3
+
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3k
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18
Ry2

]
h2
}
�i+m; j

]
m={−1;1}
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+
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+
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1
2
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6
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6
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+ 6− 4�x − 2�y + 4�x�y3
)
k2

+
(
1
2
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6
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6
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]
�i; j
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1
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[(−sgn(m)u�x
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�x�y
6
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R
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1
3

[(
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2
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)
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R
− �x�y
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R
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+
{
1
3

[(
−sgn(n)v�y
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2
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)
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R
− �x�y

6
Rx2
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R

]
fi; j+n

}
n={−1;1}

+
1
2

[(
Rx2 − �x

3
Rx2 − �y

3
Rx2 +

�x�y
9
Rx2

)
k2

R

+
(
Ry2 − �x

3
Ry2 − �y

3
Ry2 +

�x�y
9
Ry2

)
h2

R

]
fi; j (23)

Substituting the Taylor series expansion equations with respect to �i; j for �i±1; j ; �i; j±1, and
�i±1; j±1 into the discrete equation (23) we obtain the following modi�ed equation for (2)
after a series of algebraic manipulations:

u�x + v�y − �(�xx + �yy) + R�− f
= Ru�x�x + Rv�y�y + uv(�x + �y)�xy

+
[
2�(1− �x) + u2�x − �xh2R

6

]
�xx +

[
2�(1− �y) + v2�y − �yk2R

6

]
�yy
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+
h2u
6
(−1 + �xR)�xxx + h

2v
6
(−�x + �yR)�xxy

+
k2u
6
(−�y + �xR)�xyy + k

2v
6
(−1 + �yR)�yyy

+
h2

6

[
�
2
+ �(1− �x) + u

2�x
2

− �xh2R
12

]
�xxxx

+
k2

6

[
�
2
+ �(1− �y) + v

2�y
2

− �yk2R
12

]
�yyyy

+
(
�xh2�
2

+
�yk2�
2

− �x�yh2�
3

− �x�yk2�
3

+
�xh2v2

6
+
�yk2u2

6
− �x�yh2k2R

36

)
�xxyy

+
h2uv
6
(�x + �y)�xxxy +

k2uv
6
(�x + �y)�xyyy + · · · (24)

It is well known that the production of mixed derivative terms will distort the true transport
pro�le and, thus, severely contaminate the solution. A way to alleviate this problem is to elim-
inate the three leading mixed derivative terms, namely, uv(�x + �y)�xy; (uvh2(�x + �y)=6)�xxxy;
and (uvk2(�x+�y)=6)�xyyy shown in Equation (24). We further re�ne the afore-mentioned con-
sistent Petrov–Galerkin �nite element model to obtain its inconsistent counterparts by adding
a term T�xy to cancel out these mixed derivatives from the following explicit arti�cial �nite
element model:∫ ∫

Wi(u · ∇�− �∇2 + R�) + T�xy dx dy=
∫ ∫

Wif(x; y) dx dy (25)

Substituting (19) into (25), we can derive the following modi�ed equation that is free of the
mixed derivative terms �xy; �xxxy and �xyyy. The evidence is given in the following modi�ed
equation:

u�x + v�y − �(�xx + �yy) + R�− f
= Ru�x�x + Rv�y�y

+
[
2�(1− �x) + u2�x − �xh2R

6

]
�xx +

[
2�(1− �y) + v2�y − �yk2R

6

]
�yy

+
h2u
6
(−1 + �xR)�xxx + h

2v
6
(−�x + �yR)�xxy

+
k2u
6
(−�y + �xR)�xyy + k

2v
6
(−1 + �yR)�yyy

+
h2

6

[
�
2
+ �(1− �x) + u

2�x
2

− �xh2R
12

]
�xxxx
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+
k2

6

[
�
2
+ �(1− �y) + v

2�y
2

− �yk2R
12

]
�yyyy

+
(
�xh2�
2

+
�yk2�
2

− �x�yh2�
3

− �x�yk2�
3

+
�xh2v2

6
+
�yk2u2

6
− �x�yh2k2R

36

)
�xxyy + · · · (26)

Note that the validity of the above equation is subject to the speci�cation of T , shown in
(25), as

T = uv(�x + �y) (27)

In this context, the discrete �nite element equation at an interior point (i; j) is expressed as






 sgn(m)

12

(
�yRx1 − u�x

h
Rx2

)
− �y
2
+
�x�y
3

− u�x
6h
Rx1 +

�x
36
Rx2

+
(1− �x)(1− �y)− 1

72
Rx2


 k2

+


 sgn(n)

12

(
�xRy1 − v�y

12k
Ry2

)
− �x
2
+
�x�y
3

− v�y
6k
Ry1 +

�y
36
Ry2

+
(1− �x)(1− �y)− 1

72
Ry2


h2


�i+m; j+n



m={−1;1}; n= {−1;1}

+






 sgn(m)

(
1
2
Rx1 − �y

6
Rx1 − u�x

3h
Rx2

)
− 3 + 2�x + �y − 2�x�y

3
− 2u�x
3h
Rx1

+
�x
9
Rx2


 k2 + [

�x − 2�x�y
3

+
v�y
3k
Ry1 +

�x(1− �y)
18

Ry2

]
h2


�i+m; j



m={−1;1}

+






 sgn(n)

(
1
2
Ry1 − Ry1 �x6 − v�y

3k
Ry2

)
− 3 + 2�y + �x − 2�x�y

3
− 2v�y
3k

Ry1

+
�y
9
Ry2


 h2 + [

�y − 2�x�y
3

+
u�x
3h
Rx1 +

(1− �x)�y
18

Rx2

]
k2


�i; j+n



n={−1;1}
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+
[(
1
2
Rx2 − �x

6
Rx2 − �y

6
Rx2 +

�x�y
18

Rx2 +
4u�x
3h

Rx1

+ 6− 4�x − 2�y + 4�x�y3
)
k2

+
(
1
2
Ry2 − �x

6
Ry2 − �y

6
Ry2 +

�x�y
18
Ry2 +

4v�y
3k
Ry1

+ 6− 4�x − 2�y + 4�x�y3
)
h2
]
�i; j

=
{
1
12

[(−sgn(m)u�x
h

Rx2 +
�x�y
6
Rx2

)
k2

R

+
(
−sgn(n)v�y

k
Ry2 +

�x�y
6
Ry2

)
h2

R

]
fi+m; j+n

}
m={−1;1}; n= {−1;1}

+
{
1
3

[(
−sgn(m)u�x

h
Rx2 +

�x
2
Rx2

)
k2

R
− �x�y

6
Ry2

h2

R

]
fi+m; j

}
m={−1;1}

+
{
1
3

[(
−sgn(n)v�y

k
Ry2 +

�y
2
Ry2

)
h2

R
− �x�y

6
Rx2
k2

R

]
fi; j+n

}
n={−1;1}

+
1
2

[(
Rx2 − �x

3
Rx2 − �y

3
Rx2 +

�x�y
9
Rx2

)
k2

R

+
(
Ry2 − �x

3
Ry2 − �y

3
Ry2 +

�x�y
9
Ry2

)
h2

R

]
fi; j (28)

Inspection of the above nine-point stencil discrete equation shows that terms ai; j with
i �= j do not have negative values and that aii¿0 under all circumstances. To develop a
monotonicity-preserving �nite element model, �x; �y; �x and �y should be devised to obtain an
irreducible diagonally dominant matrix equation based on the M -matrix theory [17]. Consider-
ing an M -matrix, the inverse of this matrix is, by de�nition, positive. Subject to this condition,
solutions computed from the M -matrix �nite element equation are, in theory, monotonic. By
means of this theory, �x and �y can be derived as follows to render aii¿0 and aij¡0 (i �= j):

�x=

∣∣∣∣∣∣∣∣
f1

vh2

3k
Ry1

f2 sgn(v)
(
−vh

2

3k
Ry2

)
− 2vh2

3k
Ry1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
sgn(u)

(
−uk

2

3h
Rx2

)
− 2uk2

3h
Rx1

vh2

3k
Ry1

uk2

3h
Rx1 sgn(v)

(
−vh

2

3k
Ry2

)
− 2vh2

3k
Ry1

∣∣∣∣∣∣∣∣

(29a)
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�y=

∣∣∣∣∣∣∣∣
sgn(u)

(
−uk

2

3k
Rx2

)
− 2uk2

3h
Rx1 f1

uk2

3h
Rx1 f2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
sgn(u)

(
−uk

2

3h
Rx2

)
− 2uk2

3h
Rx1

vh2

3k
Ry1

uk2

3h
Rx1 sgn(v)

(
−vh

2

3k
Ry2

)
− 2vh2

3k
Ry1

∣∣∣∣∣∣∣∣

(29b)

where

f1 =−
[
1
2
sgn(u)

(
Rx1 − �y

3
Rx1

)
− 3 + 2�x + �y − 2�x�y

3
+
�x
6
Rx2

]
k2

−
(
�x − 2�x�y

3
− �x�y
18

Ry2

)
h2

(30a)

f2 =−
[
1
2
sgn(v)

(
Ry1 − �x

3
Ry1

)
− 3 + 2�y + �x − 2�x�y

3
+
�y
6
Ry2

]
h2

−
(
�y − 2�x�y

3
− �x�y
18

Rx2

)
k2

(30b)

The validity of �x and �y shown above is subject to �x and �y, which take the same form
as that derived in the one-dimensional analysis. The reason for using the one-dimensional
representation of �x and �y is that the �nite element equation shown in the block of equation
(28) is akin to the one-dimensional �nite element equation. Considering the inconsistent �nite
element model, we �nd from (18) and (29) that solutions exhibiting the sharp pro�le form
can be obtained in the �ow. We will address this issue through examples considered later.

5. NUMERICAL RESULTS

As is usually the case when a scheme for solving the di�erential equation is presented, we
needed to validate the scheme. For this purpose, we employed test problems which were
amenable to analytic solutions. To make matters simple, we assumed that �=1; u=1, and
R=2 in the analysis of one-dimensional CDR equation, where f= u cos x + (� + R) sin x.
Subject to the Dirichlet-type boundary condition, the exact solution to the inhomogeneous
CDR equation was derived as follows:

�exact = sin x (31)

Uniform grids were overlaid on the region 06x61. The �nite element result plotted in
Figure 4 and the L2-error norm (1:322× 10−7) show good agreement with the exact solution,
thus demonstrating the applicability of the proposed scheme to solving the inhomogeneous
CDR equation.
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Figure 4. The comparison of exact and numerical solutions for the problem with a smooth solution.
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Figure 5. The comparison of exact and numerical solutions for the
problem with a sharp gradient solution.

To further verify that the scheme is applicable to problems containing the discontinuous
source term, we considered the case in which

f=



0; x¡

1
2

R; x¿
1
2

(32)

Subject to the boundary conditions �(x=0)=0 and �(x=1)=1, the exact solution takes the
following form:

�=



1
2
sinh(�x)
sinh(�=2)

; x¡
1
2

1− 1
2
sinh(�(1− x))
sinh(�=2)

; x¿
1
2

(33)
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Figure 6. The plots of � for the �rst two-dimensional test case at: (a) �x=�y= 1
10 ;

(b) �x =�y= 1
20 ; (c) �x=�y=

1
40 ; and (d) �x=�y=

1
80 .

where �=(
√
R=�). In this case, we considered �=1; u=0; R=104 and h= 1

10 . Figure 5
shows the exact solution in full line and numerical solution shown in symbols. As evident from
the L2-error norm 9:2046× 10−8, good agreement between the two solutions was obtained.
We proceeded to verify the applicability of the proposed two-dimensional �nite element

model. The �rst validation test case involves variable coe�cients: u=sin 	x; v=sin 	y;
�=xy, and R= xy. Subject to f=(1 + 2	2)xy sin 	x sin 	y + 	(cos	x + cos	y), the
exact smooth solution can be easily derived as �= sin 	x sin 	y. In this test, a series of
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Figure 7. The plots of � for the second two-dimensional test case, given in (34), computed at:
(a) �x=�y= 1

10 ; (b) �x=�y=
1
20 ; (c) �x=�y=

1
40 ; (d) �x=�y=

1
80 .

continuously re�ned uniform grids has been considered. The L2-error norms are obtained
as 0:4793× 10−2; 0:3099× 10−2; 0:1422× 10−2 and 0:5320× 10−3 for grids with the
resolutions of 11× 11; 21× 21; 41× 11 and 81× 81, respectively.
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Figure 8. Schematic of the skew advection problem.
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Figure 9. The computed contour pro�les of � computed at di�erent grids: (a) 11× 11;
(b) 21× 21; (c) 41× 41; and (d) 81× 81.

The second case, considered previously by Codina [14], involves f=1; R=1; �=10−4 and
u=(10−4 cos(	=3); 10−4 sin(	=3)). Subject to the Dirichlet-type boundary condition � (�x∈
@�), simulations were performed on uniform grids with di�erent resolutions of �x=�y=
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1=10; 1=20; 1=40 and 1=80. Finite element results shown in Figure 6 reveal that sharp pro�les
of � could be captured without incurring oscillations.
Another problem [18] was chosen to show the ability of the proposed �nite element model to

obtain oscillation-free solutions in a domain containing sharp layers. With �=10−8; u=(2; 3),
and R=1, the source term f was properly chosen so as to render the exact solution given
below

�(x; y)=2y2 sin x
[
1− exp

(−2(1− x)
�

)][
1− exp

(−(1− y)
�

)]
(34)

In the domain 0:996x61:0; 0:996y61:0, �nite element solutions were sought at four uni-
form gird sizes: �x=�y=10−3=10; 10−3=20; 10−3=40 and 10−3=80. As in the previous test,
the boundary layer pro�les shown in Figure 7 were obtained without incurring oscillations.
For the sake of completeness, we also apply the presently developed monotonic CDR model

to solve for the skew advection problem [19], which has been frequently chosen to benchmark
the discontinuity-capturing convection–di�usion models. In Figure 8, the dashed line, with the
angle of 
(= tan−1 v=u=	=6), divides the unit cavity into two parts. The �ow condition under
investigation is that with �=2× 10−4 and (u; v)= (√3=2; 12 ). It is seen from Figure 9 that no
oscillation has been observed near the dividing line for each test grid. This demonstrates the
ability of the proposed model to resolve the interior sharp layer.

6. CONCLUDING REMARKS

We have presented in this paper the Petrov–Galerkin �nite element model for solving the
convection–di�usion-reaction equation in two dimensions. Our aim is to retain stability without
reducing accuracy. To achieve this goal, we add a term to make the consistent �nite element
model into its inconsistent counterparts so as to eliminate three leading mixed derivatives.
Good agreement with the smoothly varying exact solution has been obtained, thus verifying
the applicability of the proposed �nite element model. We have also extended the �nite
element model based on the M -matrix theory and applied it to solve a problem involving
large gradients. Computations have demonstrated the model’s ability to capture sharply varying
pro�les near the boundary as well as in the �ow interior.

ACKNOWLEDGEMENTS

Financial support from the National Science Council of the Republic of China under Grant NSC88-
2611-E-002-025 is acknowledged.

REFERENCES

1. Ilinca F, Pelletier D. Positivity preservation and adaptive solution for the k–� model of turbulence. AIAA
Journal 1988; 36(1):44–50.

2. Crochet MJ, Davies AT, Walters K. Numerical Simulation of Non-Newtonian Flow. Elsevier: New York, 1984.
3. Leboucher L. Monotone scheme and boundary conditions for �nite volume simulation of magnetohydrodynamic
internal �ows at high Hartmann number. Journal of Computational Physics 1999; 150:181–198.

4. Harari I, Hughes TJR. Finite element methods for the Helmholtz equation in an exterior domain: model problems.
Computer Methods in Applied Mechanics and Engineering 1991; 87:59–96.

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 39:639–656



656 TONY W. H. SHEU AND HARRY Y. H. CHEN

5. Ataie-Ashtini B, Lockington DA, Volker RE. Numerical correction of �nite di�erence solution of the advection–
dispersion equation with reaction. Journal of Contaminant Hydrology 1996; 23:149–156.

6. Hossain MA. Modeling advective–dispersive transport with reaction: An accurate explicit �nite di�erence model.
Applied Mathematics and Computation 1999; 102:101–108.

7. Hossain MA, Young DR. On Galerkin models for transport in groundwater. Applied Mathematics and
Computation 1999; 100:249–263.

8. Harari I, Hughes TJR. Stabilized �nite element methods for steady advection–di�usion with production.
Computer Methods in Applied Mechanics and Engineering 1994; 155:165–191.

9. Idelsohn S, Nigro N, Storti M, Buscaglia G. A Petrov–Galerkin formulation for advection–reaction-di�usion
problems. Computer Methods in Applied Mechanics and Engineering 1996; 136:27–46.

10. Uri M Ascher, Robert MM Mattheij, Robert D Russell. Numerical Solution of Boundary Value Problems for
Ordinary Di�erential Equations. Prentice-Hall: New Jersey, 1998; 454–456.

11. Doolan EP, Miller JJH, Schilders WHA. Uniform Numerical Methods for Problems with Initial and Boundary
Layers. Boole Press: Dubin, 1980.

12. Tezdugar T, Park Y. Discontinuity capturing �nite element formulations for nonlinear convection–di�usion-
reaction equations. Computer Methods in Applied Mechanics and Engineering 1986; 59:307–325.

13. Codina R. A chock-capturing anisotropic di�usion for the �nite element solution of the di�usion–convection-
reaction equation. Finite Element in Fluids, New trends and Applications Part 1, Morgan K. (ed.), Pineridge:
Swansea, 1993; 67–75.

14. Codina R. Comparison of some �nite element methods for solving the di�usion–convection–reaction equation.
Computer Methods in Applied Mechanics and Engineering 1998; 156:185–210.

15. Warming RF, Hyette BJ. The modi�ed equation approach to the stability and accuracy analysis of �nite-di�erence
methods. Journal of Computational Physics 1974; 14:159–179.

16. Hughes TJR, Brooks AN. A multi-dimensional upwind scheme with no crosswind di�usion. In Finite Element
Methods for Convection Dominated Flows, Hughes TJR (ed.), AMD 34: ASME: New York, 1979; 19–35.

17. Meis T, Marcowitz U. Numerical solution of partial di�erential equations. In Applied Mathematical Science.
John F, Sirovich L, La Salle JP (eds). Springer: Berlin, 1981; 32.

18. Lin� T, Stynes M. Numerical methods on shishkin meshes for linear convection–di�usion problems. Computer
Methods in Applied Mechanics and Engineering 2001; 190:3527–3542.

19. Gri�ths DF, Mitchell AR. In Finite Element for Convection Dominated Flows, Hughes TJR (ed.), in AMD
34. ASME: New York, 1979; 91–104.

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 39:639–656


